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Laboratoire de Physique Théorique de la Matière Condensée, CNRS UMR 7600,
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Abstract
Topological quantum computation with Fibonacci anyons relies on
the possibility of efficiently generating unitary transformations upon
pseudoparticles braiding. The crucial fact that such a set of braids has a
dense image in the unitary operations space is well known; in addition, the
Solovay–Kitaev algorithm allows us to approach a given unitary operation to
any desired accuracy. In this paper, the latter task is fulfilled with an alternative
method, in the SU(2) case, based on a generalization of the geodesic dome
construction to higher dimension.

PACS numbers: 05.30.Pr, 03.67.Lx, 03.65.Ld

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Topological quantum computation (TQC) [1–4] makes use of the subtle properties of
topological phases of matter to provide an original implementation for quantum computation,
better immune to decoherence. Its main ingredients are anyonic excitations displaying
non-Abelian braiding statistics. Although no direct experimental proof exists that such
characteristics occur in real physical systems, there is some evidence that, for instance, the
12/5 fractional quantum Hall effect states should be good candidates to display the expected
properties.

Up to now, contributions to the TQC field have mainly been split into two parts, a
‘hardware’ part whose main purpose is to find microscopic models and possible experimental
realizations displaying these topological features in their spectral properties, and a ‘software’
part, which starts from a formal (non-Abelian) anyon model and defines, out of it, qubit
states, quantum gates and algorithms. Note that this splitting is already present in more
‘standard’ quantum computation, with on one hand the large effort being devoted to building
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experimental implementations of sets of coupled qubits, and the quantum algorithm part,
which in fact started first, and most often does not discriminate between the very different
microscopic realizations for the qubits, supposing that a large number of them are already
available.

In the present paper, we analyze a model with three Fibonacci anyons (irrespective of
their implementation), and ask how their manipulation (upon braiding) can appropriately
approximate the action of generic SU(2) unitary transformations. As is well known [2], this is
in principle possible to any desired accuracy, thanks to the fact that the associated non-Abelian
braid group representation is dense in SU(2). To make this system interesting, it is also
important that this can be done efficiently. Such a task has been fulfilled [5, 6] by splitting the
braid search into two distinct parts: first, a brute force search among all braids up to a given
length to generate the closest matrix to the target one; then, a refinement step done by iteratively
implementing the Solovay–Kitaev algorithm [7, 8]. With additional Fibonacci anyons, it is
possible to define more qubits, whose interaction results from an appropriate braiding. For
example, a universal set of quantum gates has been derived [5, 6], with six anyons forming a
two-qubit system, proving that it can in principle allow for quantum computation.

Here an alternative approach is proposed, of rather a different nature, in order to generate
the SU(2) elements. Instead of first insisting on the dense SU(2) covering generated by the
Fibonacci braid group generators, we start by analyzing how good the latter can approximate
the generators of binary polyhedral SU(2) finite subgroups. It comes out that the subgroup of
higher order, the binary icosahedral group Y with 120 elements, can indeed be very efficiently
approached. Recalling the isomorphism between SU(2) and the three-dimensional sphere S3,
this already allows a fine grained description of SU(2). Indeed, to the group Y corresponds the
regular polytope {3, 3, 5} [9, 10], whose full symmetry group G (discrete subgroup of O(4))
has order 14 400. This already leads to an efficient way of generating 14 400 SU(2) unitary
transformations, related by symmetry.

We further show how to iteratively get finer and finer meshes in SU(2) by generating the
so-called geodesic hyperdomes, the analogous with one dimension more, of the celebrated
families of geodesic domes which provide fine discrete approximations of the usual sphere S2.

In the final part, a more ‘disordered’ version of the latter step is described, which already
provides an efficient speedup for ‘brute-like’ search.

2. Binary icosahedral group generation with Fibonacci anyons

Fibonacci anyons are quasiparticles displaying non-Abelian statistics upon braiding. We will
not recall here the whole derivation of their properties, which can be found elsewhere [2–6],
but only summarize what is used in the present context. What we need here is an expression
for the two generators of the associated (non-Abelian) two-dimensional representation of the
braid group B3. A close inspection of the braiding and fusion rules, taking into account
the need to satisfy the so-called pentagon and hexagon equations, allows us to find a set of
generators.

As shown in [2], a qubit (2-level) system can be associated with three Fibonacci anyons,
with a third state (called ‘non-computational’) which is not coupled to the first two upon
anyons braiding. We shall therefore focus on the SU(2) unitary action (up to a global phase)
onto the qubit space.

2.1. Braid group generators for Fibonacci anyons

Generally speaking, a representation of the braid group Bn has n − 1 generators σj satisfying
the following two simple relations,
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Figure 1. Graphical representation for the pseudo-generator braids s̃ and t̃ , built as words in the
σ1 and σ2 Fibonacci generators. Note that σ1 (resp. σ2) refers to crossing the upper (resp. the
middle) braid with the middle (resp. the lower) braid, with the convention that the upper braid
crosses ‘on top’ of the lower braid (the reverse case coding the inverse σ−1

1 and σ−1
2 ).

σiσj = σjσi, |i − j | � 2

σjσj+1σj = σj+1σjσj+1, 1 � j � n − 2,
(1)

which already limit the set of possible σj matrices. Fibonacci fusion rules constrain further
this set, which eventually leads to the following unique (up to a phase) solution in the B3 case:

σ1 =
(

exp(−7iπ/10) 0
0 exp(7iπ/10)

)
, (2)

σ2 =
(−τ exp(−iπ/10) −i

√
τ

−i
√

τ −τ exp(iπ/10)

)
(3)

with τ = (
√

5 − 1)/2 the inverse golden mean. Note that σ1 and σ2 both satisfy

σ 10
1 = σ 10

2 = −1. (4)

Now, any braid is represented as a product of the σj generators. It also allows for an
unambigous graphical presentation, where σj is displayed as a crossing between the braid lines
j and j + 1 (see, for example, figure 1). A word of caution should be given here concerning
the braid ordering. Braid words are literally given and drawn here, as usual, with time flowing
from left to right. Quantum qubit states, however, are represented as column vectors acted on
the left by unitary matrices. Therefore, to build the unitary matrix corresponding to a braid
word requires us to reverse the order from the braid word to the associated matrix product.

2.2. Binary polyhedral groups: geometry and generators

Due to the 2:1 homomorphism between SU(2) and SO(3), discrete SU(2) subgroups have a
counterpart as point groups in R3. Let us focus here on the binary tetrahedral T (order 24),
octahedral O (order 48) and icosahedral Y (order 120) groups. When viewed as elements of
S3, T and Y correspond to the regular polytopes {3, 4, 3} and {3, 3, 5} [9, 10]. The group
presentations are given here together with sets of simple quaternion generators (see appendix
A for a brief presentation of quaternions).

• Binary tetrahedral group T

〈s, t |s3 = t3 = (st)2 = −1〉
s = (1 + i + j + k)/2 (5)

t = (1 + i + j − k)/2

3
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• Binary octahedral group O

〈s, t |s3 = t4 = (st)2 = −1〉
s = (1 + i + j + k)/2 (6)

t = (1 + i)/
√

2

• Binary icosahedral group Y

〈s, t |s3 = t5 = (st)2 = −1〉
s = (1 + i + j + k)/2 (7)

t = (τ−1 + τ i + j)/2.

2.3. The binary icosahedral group approached with Fibonacci anyons

We recalled above that the braid group B3 representation with Fibonacci anyons is dense
in SU(2). We now question the possibility of generating the binary icosahedral subgroup
by imposing some constraints on the words generated with {σ1, σ2}. Trying to build new
generators s̃ and t̃ from {σ1, σ2}, which would follow the above-recalled generating relations
for Y, we eventually find that while two of the three relations are easily and exactly fulfilled,
the third one seems to be only asymptotically satisfied with longer and longer words. We call
these cases ‘pseudo-generators’. A brute force search for best words up to length 10 already
gives the following very good approximations:
a pseudo-generator s̃ = σ 2

2 σ−3
1 σ 2

2 σ−1
1 σ2σ1

s̃ =
(

0.5 − 0.706 298i −0.428 519 − 0.259 8349i
0.428 519 − 0.259 8349i 0.5 + 0.706 298i

)
(8)

with s̃3 =
(−1 0

0 −1

)

and a pseudo-generator t̃ = σ1σ
2
2 σ−2

1 σ2σ
−1
1 σ2σ

−1
1 σ2

t̃ =
(−0.309 017 + 0.159 002i −0.414 981 + 0.840 843i

0.414 981 + 0.840 843i −0.309 017 − 0.159 002i

)
(9)

with t̃5 =
(−1 0

0 −1

)
.

These two pseudo-generators are shown in figure 1. Note that in the above two expressions,
the numerical values are cut up to six or seven digits; but the s̃ and t̃ exact expressions, as
products of the {σ1, σ2} Fibonacci generators, are such that s̃3 = t̃5 = −1 is exact. Finally,
the third binary icosahedral group generating relation is only almost fulfilled

(s̃t̃ )2 =
(−0.999 995 + 0.000 529i −0.001 483 − 0.002 677i

0.001 483 − 0.002 677i −0.999 995 − 0.000 529i

)
. (10)

Now, it is easy to build, with short words in the pseudo-generators {s̃, t̃}, a set denoted
by Ỹ corresponding to a very slightly deformed {3, 3, 5} polytope. Since {s̃, t̃} do not exactly
fulfil the Y generating relations, their span is in principle infinite. What we are doing in fact is
to select, once for all, 120 words in {s̃, t̃} (e.g. 120 braids) which very closely approximate the
Y elements. The word length never exceeds 8, which puts an upper bound of 80 to the length
of the Ỹ elements in terms of the original {σ1, σ2} Fibonacci generators.

Note that it may still be possible to find shorter words leading to a good approximation
of Y, either by the process of word contraction or by finding equivalent approximations by
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the brute force search in the original generators. We are not interested here in absolute length
minimization, but rather in describing a fine grid mesh based on a discrete subgroup and a
geodesic hyperdome iterative generation; we shall therefore stick to {s̃, t̃} generated braids.

3. Iterative fine meshes in SU (2) with geodesic hyperdomes

We are going to build increasing sets P i and Qi which are the images under the full G group of
seed sets of points (denoted bySP

i andSQ
i ) inside the orthoschemeO (the G group fundamental

region, see appendix C). The Pi , having the form of ‘geodesic hyperdomes’, were introduced,
more than 20 years ago, in the very different context of atomic structures with long-range
icosahedral order [11, 12]. More precisely, those Pi all shared the exact G subgroup of
O(4), while here the sets Pi follows approximate symmetry operations G̃, built from Ỹ . But
from now on, we shall no longer differentiate between the exact Y and the approximate Ỹ in
describing these sets. These polytopes Pi are built such that the vertices’ local order is very
close to that of the {3, 3, 5} vertices. In particular they have (slightly deformed) tetrahedral
cells, each of which being decomposed into 24 smaller tetrahedra, which divide the larger
tetrahedron in a way similar to the exact orthoscheme division of a {3, 3, 5} cell (see appendix
D, and for more details, [11, 12]). The Qi sets correspond to this finer division of the Pi , with
one generic point in each orthoscheme-like tetrahedron.

In order to generate, with Fibonacci anyons, the corresponding sets of unitary matrices,
one proceeds as follows. To get the full 14 400 images (under G) of a generic matrix q (noted as
a unit quaternion) one must generate the elements (see appendix C) lqr and lq̄r with l, r ∈ Y .
In terms of braiding operations, l and r are, once for all, put into one-to-one correspondence
with braids (also noted as l and r for convenience) written in the generators s̃ and t̃ . The
central braid associated with the (seed) matrix q is then concatenated on the left and the right
by l and r.

3.1. The P0 and Q0 first meshes

The first case is very simple and directly associated with the binary icosahedral group Y.
P0 corresponds to the {3, 3, 5} polytope; the seed set SP

0 is just an orthoscheme vertex
corresponding to one element of Y. Q0 is the maximal set invariant under the full G group
symmetry, and SQ

0 contains one point inside the orthoscheme.
In order to represent the SU(2) elements, we shall use a Hopf map from SU(2) onto

the complex plane, as explained in appendix B. Figure 2 (left) shows the Hopf maf of P0;
the obtained orientation on S3 is generic, which leads to a full Hopf map showing 60 distinct
elements on the base space (a fibre containing only two opposite matrices ±M ∈ SU(2)).
Only 51 among these 60 base points are shown here on a limited region. With the full Hopf
map (with an inverse stereographic projection onto S2), this set of 60 points forms a semi-
regular polyhedron with icosahedral symmetry. Figure 2 (right) displays the Hopf map of the
Q014 400 elements. Note that this set, although much denser, still has some uncovered regions
(of pseudo-pentagonal shapes).

3.2. The finer meshes P1 and Q1

The set P1 corresponds to the first step of a geodesic hyperdome generation, as discussed in
appendix D. It contains 2160 points on S3, which are the images under G of SP

1 made of three
different points in the orthoscheme O.
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Figure 2. Hopf map (onto the complex plane) of sets of SU(2) elements. Left: the set Ỹ (e.g.
P0) with its 120 elements obtained from the pseudo-generators braids s̃ and t̃ , which map onto 60
distinct points, one being sent to infinity and 51 being shown on this limited region. Right: Hopf
map of the (14 400 elements) set Q0.

One point coincides with a {3, 3, 5} vertex (which is also an orthoscheme vertex), and can
therefore be chosen conveniently as the identity matrix (in terms of braiding operation, this
means no braid in the seed region). The other 119 images can simply be taken by applying Y
either on the left or on the right.

The second seed point in O is also an orthosheme vertex, located at the centre of a {3, 3, 5}
tetrahedral cell; the whole 600 images under G give a {5, 3, 3} polytope [9].

The third points sit along a {3, 3, 5} edge, at 1/3 of the total edge length from a vertex.
There are 1440 such points.

So, in order to generate SP
1 , one only needs to generate two new SU(2) matrices

corresponding to these last two seed points. Approximating these two matrices with Fibonacci
anyons is done by the brute force search; reasonably good approximations are found upon
inspection of all braids (in the {σ1, σ2} initial Fibonacci generators) of limited length. Note
that since the full G group is subsequently acted, it is not necessary that the initial brute force
search generates the seed points in the same G group fundamental region; this point already
improves greatly the speed of that search step, and will be a main ingredient of the alternative
approach presented in section 4.

The set Q1 is more complex to generate. P1 has 12 000 (almost regular) tetrahedral cells.
Each such cell can be subdivided into 24 smaller tetrahedra, in a way similar to the division
of the perfect tetrahedral P0 cells into 24 orthoscheme copies. As a whole Q1 has 288 000
elements. The corresponding set SQ

1 contains 20 points. Here again, the associated 20 SU(2)

matrices are generated by the brute force search into finite length braids.

3.3. The set of iterative finer meshes Pi and Qi

The above construction of {P1,Q1} from {P0,Q0} can be iterated ad infinitum. It can be seen
simply as a site decoration procedure; it can also be derived from a barycentric construction
detailed in [12]. We do not intend to recall this method here and simply give in table 1 below
some quantitative information. Note that the number of sites grows by a constant factor (20)
at each step in the sets Qi .

4. An alternative method to SU (2) discretization

The above iterative hyperdomes correspond to almost regular coverings of SU(2). One can
also proceed differently, and get, rather efficiently, less regular coverings. We know, from

6
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Figure 3. Hopf map (onto the complex plane) of SU(2) matrices obtained from all words (up to
length 7) in the {σ1, σ2} Fibonacci generators, and brought back, modulo of the G group action, in
the same orthoscheme O.

Table 1. Number of sites (SU(2) elements) in the first iterated hyperdomes Pi and related sets Qi .

P0 Q0 P1 Q1 P2 Q2 P3 Q3

120 14 400 2160 288 000 42 480 5760 000 847 440 115 200 000

the (once for all built) set Ỹ , how to send any of the 14 400G fundamental regions onto a
given one O; we can therefore focus on the filling operation limited to O. This can be done
by considering any matrix generated from a word in the braid generators {σ1, σ2} . This
SU(2) element is in most cases outside O; but it can be sent to O by the appropriate G
element. Generically, each new word therefore brings a new element in O. Figure 3 shows
such ortoscheme filling for all words up to length 7. Applying the G group 14 400 elements
(by concatenating braids on the left and the right with the known 120 Y elements) eventually
leads to an already quite dense SU(2) covering.

As an example, let us consider the SU(2) matrix iσx , which was approximated along a
brute force search in [5, 6], where a braid of length 44 is found at a distance of about 10−3

of iσx . Here a solution, equivalent under the G symmetry group, and with the same order
of magnitude accuracy, can be found with a braid of half of this length, which then strongly
reduces the brute force search. Note however that the full braid (with the G elements acting
on the left and right) will eventually be longer than 44.

5. Conclusions and comments

Topological quantum computation with Fibonacci anyons strongly relies on the possibility
of closely approaching any unitary matrix upon braiding the anyons. In this paper, we have
shown how to fulfil this task for the ‘three anyons–one qubit’ case, by generalizing the standard
geodesic dome covering of the sphere S2 to the ‘SU(2)–S3’ hyperdome case. The efficiency
of this construction is due to the close, and yet unexplored, relation between Fibonacci braid
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generators and the binary icosahedral group generators. As a consequence, iterative finer and
finer SU(2) meshes can be generated, in a controlled way, with braid words of limited length.

Generalization to many qubits (with more Fibonacci anyons) is not easy. The first step
would consist of selecting the high order discrete subgroup of SU(N) and try to approach their
generating set by braiding the anyons. As usual, one should first focus on one- and two-qubit
gates, since it is known that generic SU(N) can be generated by their suitable concatenation.
So the natural next step will be to analyze the ‘two-qubits SU(4)’ case.

One way, presently still under study, is to first analyze nice discrete sets of two-qubits
related by symmetry, and simply associated with successive shells of the eight-dimensional
dense lattice E8 [13]. The first shell, with 240 points, corresponds (upon modding out a global
phase factor) to 60 two-qubit ‘physical’ states: 36 product states and 24 maximally entangled
(EPR) states. The product states are easily generated by separately braiding two sets of three
braids (one needs only to use elements from the binary tetrahedral group, a Y subgroup). The
entangled states will require more subtle braiding operations, such that they keep the system
inside the two-qubit Hilbert space. Taking advantage of known properties about E8 shellings
[14] (together with the entanglement sensitive S7 Hopf fibration [15]), larger sets of two-qubit
states with intermediate entanglement could also be generated.
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Dublin workshop on topological quantum computing in September 2007, where I benefitted
from remarks by D Bonesteels and M Freedman.

Appendix A. SU (2) matrices, quaternions and the S3 sphere

Quaternions are usually presented with the imaginary units i, j and k in the form:

q = x0 + x1i + x2j + x3k, x0, x1, x2, x3 ∈ R (A.1)

with i2 = j2 = k2 = ijk = −1, the latter ‘Hamilton’ relations defining the non-commutative
quaternion multiplication rule. The conjugate of a quaternion q is q = x0 − x1i − x2j − x3k
and its squared norm reads N2

q = qq. The set of normed (or unit) quaternions will be denoted
by Q.

Quaternions can also be defined equivalently, using the complex numbers c1 = x0 + x1i
and c2 = x2 + x3i, in the form q = c1 + c2j, or equivalently as an ordered pair of complex
numbers satisfying

(c1, c2) + (d1, d2) = (c1 + d1, c2 + d2) (A.2)

(c1, c2)(d1, d2) = (c1d1 − c2d2, c1d2 + c2d1). (A.3)

Generic SU(2) matrices read

M =
(

a + ib c + id
−c + id a − ib

)
, with a2 + b2 + c2 + d2 = 1. (A.4)

The latter relation (unit determinant) identifies SU(2) with the three-dimensional sphere
S3. Writing M as

M = a

(
1 0
0 1

)
+ b

(
i 0
0 −i

)
+ c

(
0 1

−1 0

)
+ d

(
0 i
i 0

)
(A.5)

8
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allows us to write M as the unit quaternion

M = a + bi + cj + dk, (A.6)

with the identification

i ≡
(

i 0
0 −i

)
, j ≡

(
0 1

−1 0

)
, k ≡

(
0 i
i 0

)
. (A.7)

Appendix B. Hopf map representation of SU (2) matrices

A fibred space E is defined by a (many-to-one) map from E to the so-called ‘base space’, all
points of a given fibre F being mapped onto a single base point. A fibration is said ‘trivial’ if
the base B can be embedded in the fibred space E, the latter being faithfully described as the
direct product of the base and the fibre (think, for instance, of fibrations of R3 by parallel lines
R and base R2 or by parallel planes R2 and base R).

The simplest, and most famous, example of a non-trivial fibration is the Hopf fibration
[16] of S3 by great circles S1 and base space S2. One standard notation for a fibred space is that

of a map E
F→ B, which reads here S3 S1→ S2. Its non-trivial character implies S3 �= S2 × S1.

To describe this fibration in an analytical form, we define elements of S3 as pairs of
complex numbers (α, β) which satisfy |α|2 + |β|2 = 1.

The Hopf map is defined as the composition of a map h1 from S3 to R2(+∞), followed
by an inverse stereographic map h2 from R2 to S2 :

h1:
S3 −→ R2 + {∞}

(α, β) −→ C = αβ−1 α, β ∈ C

h2:
R2 + {∞} −→ S2

C −→ M(X, Y,Z)
X2 + Y 2 + Z2 = 1

(B.1)

The first map h1 clearly shows that the full S3 great circle, parametrized by
(α exp(iω), β exp(iω)), is mapped onto the same single point with complex coordinate C. The
Hopf map is therefore a means of representing SU(2) matrices, either on the complex plane
or on the sphere S2, but with identical images for matrices differing only upon multiplication
by the matrix

(
exp(iω) 0

0 exp(−iω)

)
. (B.2)

Appendix C. Polytope {3, 3, 5}

Let us first recall the {p, q} and {p, q, r} Schläffli notations. {p, q} denotes a regular two-
dimensional tiling (either spherical, Euclidean or hyperbolic), such that each site belongs to
q regular p-gones: {4, 3} is a cube, {6, 3} is a honeycomb tiling. {p, q, r} is a regular three-
dimensional tiling, such that each edge belongs to r polyhedra of the type {p, q}: {4, 3, 4} is
the standard cubic tiling in R3.

So, {3, 3, 5} denotes a tiling of regular tetrahedra {3, 3}, with exactly five such tetrahedra
sharing an edge. The regular tetrahedron dihedral angle being slightly less than 2π/5, this

9
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leads to a polytope structure on the three-dimensional curved space S3 (embedded in R4)
[9, 10]. It contains:

• 120 vertices,
• 720 edges,
• 1200 triangular faces,
• 600 tetrahedral cells.

Note that these numbers satisfy the (S3) generalized Euler–Poincaré relation,

V − E + F − C = 0 (C.1)

where V,E, F,C are (respectively) the number of vertices, edges, faces and cells.
With one vertex on the pole, the successive ‘horizontal’ sections are (i) an icosahedral shell,

(ii) a dodecahedral shell, (iii) a new icosahedral shell and (iv) an equatorial icosidodecahedral
shell. The next shells then symmetrically reproduce the same pattern down to the S3 south
pole.

The dual polytope {5, 3, 3} has 600 vertices and 120 dodecahedral cells.
The {3, 3, 5} symmetry group plays an important role in the present study. S3 orientation

preserving point symmetries forms the group SO(4), while the full group is O(4). Symmetry
elements are easily written in terms of unit quaternions. For the SO(4) action, a given point
on S3, labelled by the quaternion q, is sent to lqr , with l, r ∈ Q (with an additional quotient
by Z2, see below). The remaining indirect symmetries in O(4) are such that q is sent to lq̄r .

The (properly oriented) {3, 3, 5} 120 vertices (on a unit radius S3) are in one-to-one
correspondance with the 120 elements of the binary icosahedral group Y. Due to the group
structure, multiplying on the left or the right by Y elements sends the polytope onto itself.
Recalling that the group centre is just {1,−1}, one finds as a whole the 7200 elements of the
orientation preserving group G′ (discrete subgroup of SO(4)).

G′ = Y × Y/Z2. (C.2)

The full group G includes 7200 additional indirect transformations, which read

q → lq̄r l, r ∈ Y, (C.3)

leading as a whole to the G 14 400 elements.
This order can also be computed directly from the number of fundamental regions; for a

regular polytope, this amounts to generating the tetrahedral orthoscheme O associated with
the full symmetry group, such that the latter is generated by reflections about the orthoscheme
faces. One orthoscheme is simply built from a regular cell {p, q} of the {p, q, r}, by selecting
a cell vertex V , a middle edge point E (for an edge through the selected vertex), a middle face
point F (for a face sharing the cell vertex and the selected edge) and finally the cell centre C
(see figure D2(left))

Polytope {3, 3, 5} has 600 tetrahedral cells. Each cell being decomposed into 24
orthoschemes, one recovers the 14 400 fundamental regions and therefore the G group order.
If one lets the G generators freely act onto a point M in one orthoscheme O, one eventually
gets a set P of N regularly spaced points on S3, with N depending on the location of M:

• If M coincides with V,N = 120 and P is a {3, 3, 5} polytope;
• If M coincides with C,N = 600 and P is a {5, 3, 3} polytope;
• If M is a generic point on a {3, 3, 5} edge, N = 1440, while N = 720 if M at a mid-edge

position;
• For a generic M inside O, the number of images is maximal, N = 14 400.
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Figure D1. Left: geodesic dome based on icosahedral symmetry; centre: an icosahedron triangular
cell, with a (fundamental region) orthoscheme decorated with three vertices (the so-called seed set
S): a triangular cell vertex V (black circle), a face centre F (white circle), a vertex D at one third
on an edge(grey circle). Right: triangle cell decoration obtained as the local images of the three
points in the orthoscheme.

Figure D2. Left: a tetrahedral {3, 3, 5} cell, with one fundamental orthoscheme whose four
vertices are a cell vertex V , a mid-edge point E, a face centre F and the cell centre C. The figure
also shows the decoration of the orthoscheme by the seed set SP

1 , with V (black circle), C (white
circle), and a third point located at one third on an edge (grey circle). Right: the cell decoration
for P1, obtained as the local images of SP

1 .

Finally, as discussed in the text (and in the next appendix), one also considers sets P
which are the image under G of several points M, forming a seed set S.

Appendix D. Geodesic hyperdomes

Geodesic domes are triangulations of the sphere S2, usually built with icoshaedral symmetry.
There are several different families of such discrete sets, the simplest being obtained by the
decomposition of icosahedron triangular faces into smaller triangles. Figure D1 (left) shows
an example with 92 vertices, where edges are scaled by a factor three (this factor is only
approximate if the dome vertices and edges are centrally mapped onto the sphere S2). The
geodesic dome shares the same symmetry group as the original icosahedron. Its vertices can
therefore be generated from a seed set S located in one of the group orthoschemes. Figure D1
(centre) displays such an orthoscheme, inside a triangular face, with S made of three points,
a face vertex V , face centre F and a point D at one third along an edge. The seed set is
then propagated under the group action, here a reflection in the orthoscheme edges, leading to
the geodesic dome 92 vertices in the following way: V has 12 images (forming the original
icosahedron), F has 20 images (forming the dual dodecahedron) and D has 60 images (forming
a ‘buckyball’ polyhedron). Figure D1 (right) shows the image of S propagated inside one
triangle of the original icosahedron.

The generalization to S3 proceeds along similar lines. Take a {3, 3, 5} tetrahedral cell
(figure D2 (left)), with one orhoscheme and the three seed vertices described in section 3.2.
And then propagate the seed set under the G group action. Figure D2 (right) shows the image
of the propagated seed set, restricted to a {3, 3, 5} tetrahedral cell.
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